例3:x,y为自然数,3x+4y=129,求y=?
A.11 B.12 C.13 D.14【答案】B。 解析:发现129和x的系数3都能被3整除,所以4y也必定被3整除,而4不能被3整除,所以只能y被3整除,答案选B。 二、真题演练 1、超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个? A. 3 B. 4 C. 7 D. 13 【答案】D。 解析:此题条件比较单一,没有直接可以利用的数量关系。因此,要优先考虑方程法,利用方程来理清数量间的特殊关系。 设大包装盒有x个,小包装盒有y个,则12x+5y=99,其中x、y之和为十多个。对于这个不定方程,我们注意到:y的系数为5,5y的尾数只能是5、0,那么对应的12x的尾数只能为4或者9,而12x为偶数,故尾数只能为4。此时,只有当x=2或者x=7时才能满足这一条件。 当x=2时,y=15,x+y=17,正好满足条件,所以y-x=13; 当x=7时,y=3,x+y=10,不符合条件。 综上所述,只能选择D。 2、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人? A. 36 B. 37 C. 39 D. 41 【答案】D。 解析:此题初看无处入手,条件仅仅有每位教师所带学生数量为质数,条件较少,无法直接利用数量关系来推断,需利用方程法。 设每位钢琴教师带x名学生,每位拉丁舞教师带y名学生,则x、y为质数,且5x+6y=76。对于这个不定方程,需要从整除性、奇偶性或质合性来解题。 很明显,6y是偶数,76是偶数,则5x为偶数,x为偶数。然而x又为质数,根据“2是唯一的偶质数”可知,x=2,代入原式则y=11。 现有4名钢琴教师和3名拉丁舞教师,则剩下学员4×2+3×11=41人。因此选择D。 相信通过以上的讲解和练习,各位考生一定可以熟练掌握不定方程的解法,在考场上迅速解题,超越对手! 省考QQ交流群:298158694 官方微信号:woshigwy 小编推荐: 最新教材推荐: |