在公务员考试行测中,遇到数量关系题时很多考生都青睐方程法,因为方程法比较简单,思路也很清晰,比较容易掌握。但是,有些情况下用方程法做题会遇到窘况:等量关系很好找,方程很好列,但是列出方程后发现一个方程有两个未知数,或者是两个方程有三个未知数,此时如何求解成为了最大阻碍。今天,带领各位考生一起探讨这个问题:不定方程到底如何求解。 不定方程是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组。要想求解就不能用中学时候的方法了,需要用一些比较巧妙的办法。 一、不定方程常用解法汇总 1、利用奇偶性求解 自然数分为奇数和偶数,而加和、做差和乘积也存在一定规律: 奇数+奇数=偶数;偶数+偶数=偶数;奇数+偶数=奇数; 奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数。 例题1:x,y为自然数,2x+3y=22,求y=? A.1 B.2 C.3 D.5 【答案】B。 解析:22是偶数,2x是偶数,偶数加偶数才能得到偶数,所以3y一定是偶数,又因为3是奇数,所以只能是y为偶数,答案选B。 2、利用尾数法求解 适用环境:一个未知数系数尾数是5或0。 例题2:现有139个同样大小的苹果往大、小两个袋子中装,已知大袋每袋装17个苹果,小袋每袋装10个苹果。每个袋子都必须装满,则需要大袋子的个数是? A.5 B.6 C.7 D.8 【答案】C。 解析:设需要大袋子x个,小袋子y个,得到17x+10y=139,由于小袋子每袋装10个苹果,所以无论有多少个小袋子,所能装的苹果数的尾数永远为0,即10y的尾数为0;而大袋每袋装17个苹果,17x的尾数为9,所以x的尾数为7,选C。 3、利用整除特性求解 适用环境:等式右边的常数和某个未知数系数能被同一个数整除(1除外),即有除了1以外的公约数。 |