以下是万能套路的下半部分: 第三步:另辟蹊径。 一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。 变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。 例20: 0,6,24,60,120,() A.186 B。210 C。220 D。226 解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。 变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。 例21:2,12,36,80,() A.100 B。125 C 150 D。175 解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。 变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。 例22:1/6,2/3,3/2,8/3,() A.10/3 B.25/6 C.5 D.35/6 解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。 第四步:蒙猜法,不是办法的办法。 有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。 第一蒙:选项里有整数也有小数,小数多半是答案。 见例5:64,24,44,34,39,() A.20 B。32 C 36.5 D。19 直接猜C! 例23:2,2,6,12,27,() A.42 B 50 C 58.5 D 63.5www.gwyzk.com 猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C 正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5 第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。 例24:-4/9,10/9,4/3,7/9,1/9,( ) A.7/3 B.10/9 C -5/18 D.-2 猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。 第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十! 例25:1,2,6,16,44,() A.66 B。84 C。88 D。120 猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。 例26:0.,0,1,5,23,() A.119 B。79 C 63 D 47 猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119 第四蒙:利用选项之间的关系蒙。 例27:0,9,5,29,8,67,17,(),() A.125,3 B129,24 C 84,24 D172 83 猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B 例28:0,3,1,6,√2,12,(),(),2,48 A.√3,24 B。√3,36 C 2,24 D√2,36 猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A |