在国家公务员考试复习过程中,很多考生会对数字特性中的倍数关系核心判定技巧很感兴趣,但是在做题过程中不太会运用,专家对这种方法进行一定的深入总结。 倍数关系核心判定特征: 如果a/b=m/n(m,n互质),则a是m 的倍数;b是n的倍数。 如果a=(m/n)×b(m,n互质) ,则a是m的倍数;b是n 的倍数。 如果a/b=m/n(m,n互质),则ab应该是m ± n的倍数当数学运算题目中出现了百分数(浓度问题除外)、分数和倍数关系时,可考虑能否用倍数关系核心判定特征快速解题。在应用的时候,一般是从所求的量入手,根据题目所给的条件构建倍数比例关系。
例1、某城市共有四个区,甲区人口数是全城的4/13,乙区的人口数是甲区的5/6,丙区人口数是前两区人口数的4/11,丁区比丙区多4000人,全城共有人口多少万?(2003年浙江公务员考试行测第17题) A.18.6万 B.15.6万 C.21.8万 D.22.3万 答案:B 解析:读完这个题目,发现多处出现分数,我们优先考虑能否用倍数关系核心判定特征快速解题。题目求得事全城人口,观察发现与这个量有关系的就是题目中第一个条件,即“甲区人口数是全城的4/13”,显然可以构建一个等价比例关系,即:甲区=(4/13)×全城,有倍数关系核心判定特征马上知道,全城应该是13的倍数,代入选项,发现只有B符合。
例2、某班男生比女生人数多 80%,一次考试后,全班平均成绩为 75 分,而女生的平均分比男生的平均分高 20% ,则此班女生的平均分是( )(2007年国家公务员考试行测第52题) A.84 分 B.85 分 C.86 分 D.87 分 答案:D 解析:读完这个题目,发现两处出现百分数,我们优先考虑能否用倍数关系核心判定特征解题。题目求的是女生平均分,观察发现与这个量有关系的就是题目中最后一个条件,即“而女生的平均分比男生的平均分高 20%”,显然可以构建一个等价比例关系,即:女生/男生=1+20%=120/100=6/5,有倍数关系核心判定特征马上知道,女生平均分应该是6的倍数,代入选项,发现只有A符合。
例3、有一食品店某天购进了 6 箱食品,分别装着饼干和面包,重量分别为 8、9、16、20、22、27 公斤。该店当天只卖出一箱面包,在剩下的 5 箱中饼干的重量是面包的两倍,则当天食品店购进了( )公斤面包(2007年国家公务员考试行测第60题) A.44 B.45 C.50 D.52 答案:D 解析:读完这个题目,发现两处出现倍数,我们优先考虑能否用倍数关系核心判定特征解题。题目求的是购进面包重量,观察发现与这个量有关系的就是题目中最后一个条件,即“剩下的 5 箱中饼干的重量是面包的两倍”, 显然可以构建一个等价比例关系,即:饼干/面包=2/1,有倍数关系核心判定特征马上知道,剩下的饼干与面包的重量之和是3的倍数。6箱食品重量除以3的余数分别是:2,0,1,2,1,0。卖掉一箱后剩下的是3的倍数,所以卖掉的一箱面包是9公斤或者27公斤,代入验证,假设卖掉的是9公斤,剩下重量是102公斤,其中1/3是面包,即34公斤是面包,显然根据题目给出各箱重量无法出现34公斤面包,所以卖掉的一箱面包是27公斤,剩下重量是75公斤,其中25公斤是面包,显然9公斤和16公斤加起来是25公斤,所以面包一共的重量是9+16+27=52公斤。 倍数关系的核心判定可以帮助我们快速破题,在考试中如果碰到数学运算题目中出现百分数、分数和倍数关系时,我们可以优先考虑用这种方法去解题。 |