在近几年的各省公务员行测考试试题中,对数字推理部分的考查,除了沿用以往的考查形式之外,出现了越来越多的特殊题型,这些特殊题型的题目本身就暗含着独特的解题技巧,考生如果单纯的解析,往往会事倍功半,浪费宝贵的考试时间。因此,本文将讲解一种特殊题型——带“0”型,给考生提供一些解题思路,帮助大家在备考、应试过程中驾轻就熟。 所谓带“0”型,就是指原数列中出现“0”这个特殊数字。对近几年的公务员考试试题分析发现,特殊数字“0”在原数列中的位置主要有两种情况:(1)位于原数列的起始位置;(2)位于原数列的中间。当原数列中的特殊数字“0”出现的位置、个数不同时,与之相应的数列规律不同,以下将详细讲解此种特殊数列及其常用解法。 起始位置出现“0”型 对于以“0”开头的数列,通常可以先将原数列的各项加上“1”、进行因 数分解或者是幂次修正数列的解题方法,然后再寻找新数列的规律,进而推出原数列的规律。 【试题解析】 例1:0,0,1,5,23,( ) A.119 B.79 C.63 D.47 【答案】A 【解析】将原数列的各项加上1,得到:1,1,2,6,24.通过观察发现新数 列存在明显的倍数关系,故使用做商多级数列的方法来解题。 新数列:1 1 2 6 24 (120) 做商: 1 2 3 4 (5) 做商得到的二级数列为等差数列。如上所显示,故原数列未知项120-1=119. 因此,选A. 例2:0,4,16,48,128,( ) A.280 B.320 C.350 D.420 【答案】B 【解析】数列中每个数字都含有4这个因子,故先提取公约数4,得到:0, 1,4,12,32。通过观察可以对这个简化的数列进行因数分解,化出两个子数列。 新数列: 0 1 4 12 32 ( 80 ) 子数列一: 0 1 2 3 4 ( 5 ) 子数列二: 0 1 2 4 8 ( 16 ) 因数分解后得到子数列一为等差数列,子数列二为除了首项0外的数字组成 的数列为等比数列。故新数列中的未知项为80,从而得到原数列中的数字为80x4=320.因此,选B 例3:0 ,9, 26, 65, 124, ( ) A .165 B.193 C.217 D.239 【答案】C 【解析】数字变化幅度较大,而且原数列中每个数字周围都有熟悉的幂次数,故考察数字之间的平方或立方关系。0 ,9, 26, 65 都在完全平方数附近摆动,但是124与121相差3。因此不考察平方关系,而考察立方关系。 |